The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles

نویسندگان

  • Christian A. Ruge
  • Ulrich F. Schaefer
  • Jennifer Herrmann
  • Julian Kirch
  • Olga Cañadas
  • Mercedes Echaide
  • Jesús Pérez-Gil
  • Cristina Casals
  • Rolf Müller
  • Claus-Michael Lehr
چکیده

The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different intrinsic surface properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clearance of surfactant lipids by neutrophils and macrophages isolated from the acutely inflamed lung.

Pulmonary surfactant reduces surface tension at the lung air-liquid interface and defends the host against infection. Several lines of evidence show that surfactant levels are altered in animal models and patients with inflammatory or infectious lung diseases. We tested the hypothesis that cells responding to lung injury alter surfactant levels through increased phospholipid clearance. Acute lu...

متن کامل

The hydrophilic proteins of lung surfactant as a prognostic marker in experimental pneumonia

Abstract BACKGROUND: SP-A and SP-D are hydrophilic proteins which regulate the inflammatory response of the lung. Pasteurella multocida is one of the most common bacteria isolated from calves suffering from shipping fever pneumonia, one of the most problems in dairy herds. OBJECTIVE: Evaluation of surfactant content may provide a valuable diagnostic tool for detection of calf pneumonia due to ...

متن کامل

The Cytotoxicity of Silver Nanoparticles Coated with Different Proteins on Balb/c Macrophage Cells

Background and Aims: Coated nanoparticles have different surface chemistry, aggregation, and interaction properties. The aim of this study was to investigate the cytotoxicity of silver nanoparticles AgNPs coated with different proteins on Balb/c macrophages. Materials and Methods: In this study these items were evaluated: 1) the size of aggregation, 2) the quantity and mechanisms of uptake, ...

متن کامل

Metabolism of phosphatidylglycerol by alveolar macrophages in vitro.

In whole animal studies, it has been shown that turnover of surfactant dipalmitoylphosphatidylglycerol (DPPG) is faster than that of dipalmitoylphosphatidylcholine (DPPC). The goal of this investigation was to characterize the metabolism of DPPG by alveolar macrophages and to determine whether they contribute to the faster alveolar clearance of DPPG. Isolated rat alveolar macrophages were incub...

متن کامل

Pulmonary epithelial cell expression of GM-CSF corrects the alveolar proteinosis in GM-CSF-deficient mice.

Mutation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene by homologous recombination caused alveolar proteinosis in mice. To further discern the role of GM-CSF in surfactant homeostasis, the synthesis of GM-CSF was directed to the respiratory epithelium of GM-CSF-hull mutant mice (GM-/-) with a chimeric gene expressing GM-CSF under the control of the promoter from the huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012